

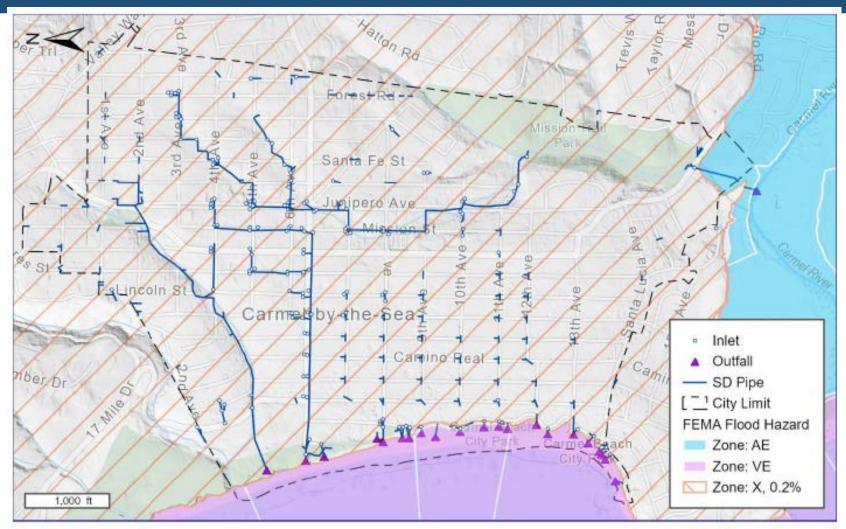
STORM DRAIN MASTER PLAN

Storm Drain Master Plan & Climate Change

Climate Committee Meeting December 17, 2020

Purpose of a Storm Drain Master Plan

- Guides planning, design, construction, operation, and maintenance of storm drainage infrastructure
- Develops a model of existing storm drain system to:
 - Assess the physical condition of the system
 - Identify bottlenecks/capacity limitations
 - Prioritize required improvements
- Assesses impacts due to changing environmental conditions and future development



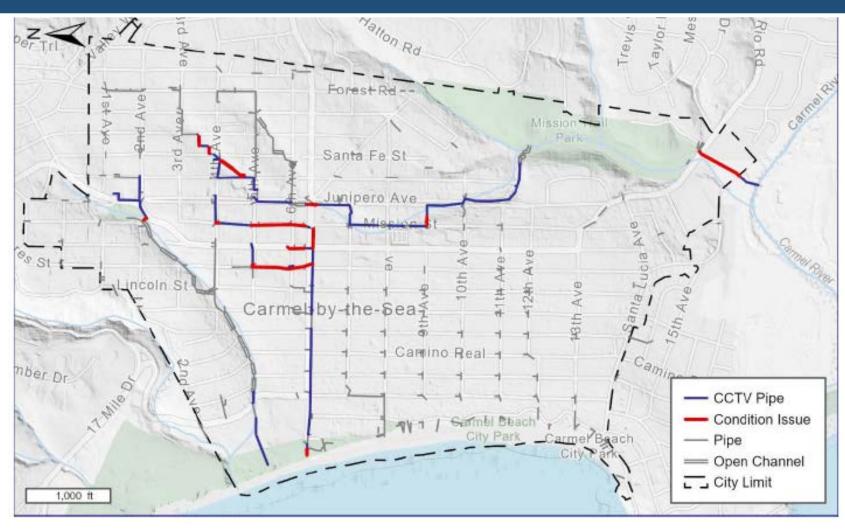
Concerns prior to SDMP

Concerns	Potential Impacts
No prior Master Plan (104 Years)	Hodgepodge development of system? Whack-a-Mole flooding.
Capacity of system unknown	Emergency preparedness and response
Unknown physical condition of system (CCTV)	Failures, sink holes, flooding due to blockages, water quality
Lack of easements for drainage maintenance	Water flows in channels across private property, potential liability
Stream stability at MTNP	Significant erosion in an environmentally-sensitive habitat
Underground "streams" (filled in canyons w/o pipes)	Basement flooding (i.e. Park Branch Library)
Cost of repairs unknown	Budget for capital improvement projects long term
Climate Change impacts	Stronger storms, sea level rise, increased flooding



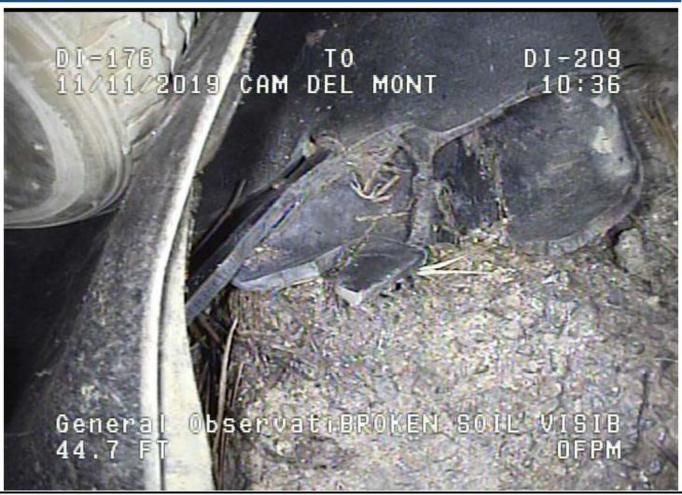
Existing Drainage System

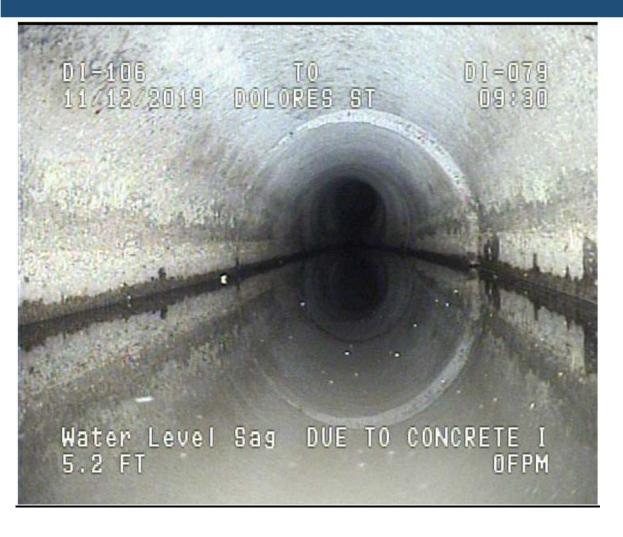
Nuisance Drainage Concerns



Physical Deficiencies per Survey

Pipes and Box Culverts	Manholes, Catch Basins, and Open Channels	Drainage Outlets
271 Pipe segments = 6.5 Miles	264 Manholes and Catch Basins	22 Outlets: 20 to Carmel Bay Double Box, MTNP/Rio to River
• Cracked pipes	• Sediment (Rio Road)	 4 Undersized Hydrodynamic Separator Units –Trash & Sediment Capture/Water quality
Broken liners	 Debris in catch basins 	Cleaning of units
• Offset joints	Deep manholes (confined spaces)	Beach erosion/ public safety concerns
Sags and sediment	 Open channels – erosion, maintenance (vegetation) 	 Minor contributing factor to undermining sea walls along the bluff
• Collapse	Open channels – pedestrian and parking safety	


Physical Deficiencies

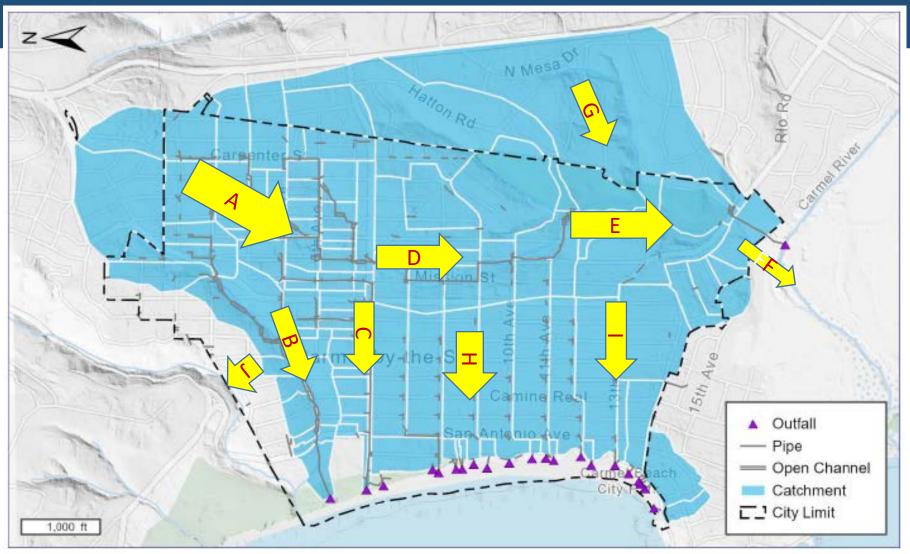

Pipe Cracking, Collapse

Pipe Sag, Debris in Catch Basin

CITY OF CARMEL-BY-THE-SEA

Pipe Joint Problems

Misc. Defects and Deposits

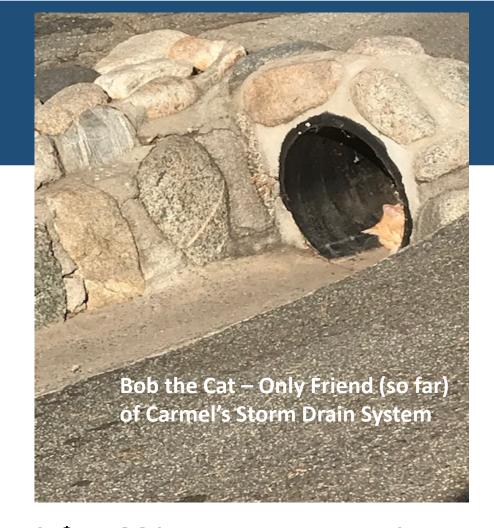

Hydrology Model – Surface Runoff

- ✓ Storm intensity Our model was per NOAA, 10-yr, 3-inches in 24 hours
- ✓ (Most cities design their storm drains for 20-year storms)
- √ 10-year storm in 2045 is 3.48 inches in 24 hours
- ✓ 50-year storm in 2045 is 5.04 inches in 24 hours
- ✓ 105 Drainage catchment areas (from peaks beyond city limits)
- Topography
- ✓ Land use (paved vs. soil)
- ✓ Soil classifications (gravel, sand, clay)
- ✓ Lag time
- ✓ GIS data
- ✓ National Resource Conservation Service Hydrology Method
- ✓ Software by Danish Hydraulic Institute
- ✓ 3 Outfalls: Carmel Bay (ASBS), Carmel River, and Pescadero Canyon

 CITY OF CARMEL-BY-THE-SEA

Drainage Pattern - Hydrology

Hydraulic Model – Pipe Flows


- ✓ Pipe sizes
- ✓ Types of pipe (friction)
- ✓ Pipe slopes
- ✓ Invert elevations
- ✓ Pipe network
- ✓ Culverts
- ✓ Open channels

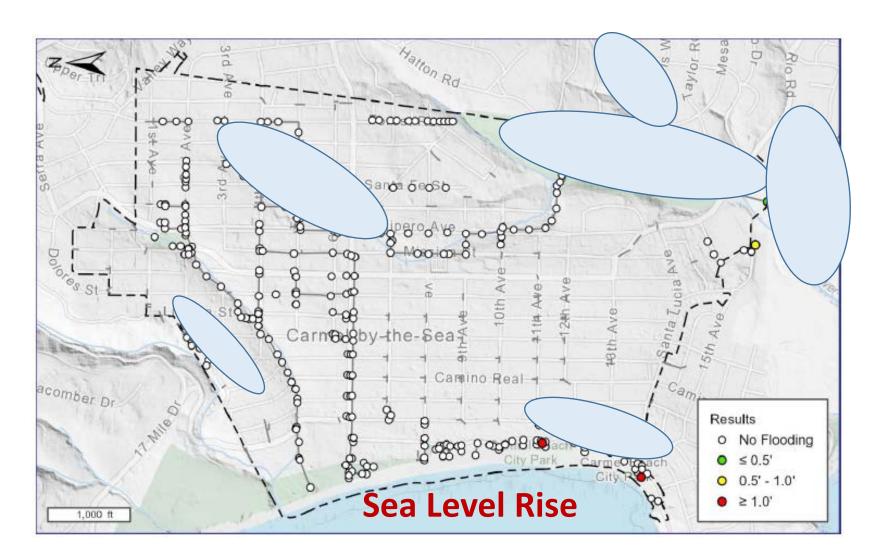
Projects to Accommodate 10-year Storm

Priority	Asset Name	Estimated Cost ¹
High Priority	Mission Street Bypass	\$820,000
	Forest Hill Park – Emergency Repair	\$130,000
	Santa Rita 1	\$220,000
High Priority Total		\$1,170,000
Medium Priority	Junipero	\$800,000
	Rio Road 1	\$2,420,000
	Santa Rita 2	\$170,000
	Ocean Ave	\$250,000
	Santa Fe	\$490,000
	Carpenter	\$270,000
	11 th and San Antonio	\$400,000
	2 nd and Monte Verde	\$830,000
	Forest Hills Park - Realignment	\$700,000
Medium Priority Total		\$6,330,000
Low Priority	2 nd Avenue	\$150,000
	5th and Junipero	\$660,000
	Mission Trail Preserve Projects	\$940,000
	Camino del Monte	\$30,000
	Dolores	\$20,000
	Rio Road 2	\$140,000
	Lasuen	\$460,000
Low Priority Total		\$2,400,000
Grand Total		\$9,900,000

A \$9.9M investment would allow a 10-year storm event (3-inches) to pass Carmel without flooding

CITY OF CARMEL-BY-THE-SEA

Climate Change – 10-Year Storm, 2045



- With improvements
- Report used 16% storm intensity increase for 2045-2075 from SWMM-CAT model developed by US EPA.
- 3.48 inches in 24 hours
- Predictions have relatively high degree of uncertainty but are helpful in identifying potential future issue areas.

CITY OF CARMEL-BY-THE-SEA

Climate Change – 50-Year Storm, 2045

- With improvements
- For a 50 year storm, the increase range is 12-20%, and the median is 17%
- 5.04 inches in 24 hours
- Flooding is caused by bottlenecks, blockages, and undersized pipes and open channels.

CITY OF CARMEL-BY-THE-SEA

Conclusions

- Storm Drain Master Plan eliminates "Fear of the Unknown!"
- Storm drains were designed piecemeal over time (common) vs. a master planned network
- Storm system designed for only 10-year storm events, less costly vs. 20+ years (common)
- W/O repairs, a 10-year storm today would cause minor flooding in a few areas
- \$9.9M needed to repair the drainage system to handle 10-year storm today
- Due to climate change, storms expected to be up to 17% stronger by 2045
- Without repairs, a 50-year storm today would cause moderate to significant flooding and damage especially in NE/Downtown and MTNP/Rio/Carmel River
- SDMP available on City Website: ci.carmel.ca.us/public-works

Questions?