

Coastal Hazards Local Coastal Program Update

Community Workshop

City Hall | Council Chambers 4pm-6pm May 15, 2025 integral

Agenda

- 4:00 pm 4:30 pm
- 4:30 pm 5:00 pm 5:00 pm – 5:30 pm
- 5:30 pm 6:00 pm

Project background and presentation on beach width changes and sea level rise Breakout groups – Round 1 Presentation on Adaptation Strategies Breakout groups – Round 2; Closing

Background

What is a Local Coastal Program?

> City's planning document for development in the Coastal Zone

Why the Local Coastal Program (LCP) Update?

- Coastal Commission requires that LCPs be updated to consider sea level rise
 - Current LCP does not consider SLR or include adaptation policies

CALIFORNIA COASTAL COMMISSION SEA LEVEL RISE POLICY GUIDANCE

Interpretive Guidelines for Addressing Sea Level Rise in Local Coastal Programs and Coastal Development Permits

Original Guidance unanimously adopted – Augus 12, 2015 Science Update unanimously adopted – November 7, 2018 2024 Update unanimously adopted – November 13, 2024

Critical Infrastructure at Risk Sea Level Rise Planning Guidance for California's Coastal Zone

inal Adopted Guidani November 17, 2021

Coastal Hazards Local Coastal Program Update Process

integral

Meeting Objectives

- > Provide the community with information on seasonal and longterm beach changes; sea-level rise projections; and coastal hazards at Carmel Beach
- > Provide the community with information on strategies the City can take to mitigate the impacts of storm events and sea level rise on coastal erosion, beach width, beach access, and infrastructure
- Receive feedback from community on potential adaptation strategies

Seasonal Beach Width Changes and Sea-Level Rise

Winter vs Spring Waves

integral

Spring Accretion Dominant

7

Processes Driving Erosion

Coastal Processes:

- > Tide level
- > Breaking wave run up
- > Wave reflection
- > Wave overtopping

Local Conditions:

> Geomorphology

integral

- > Coastal armoring
- > Cliff/bluff substrate
- > Localized currents generated by waves> Other factors including stormwater
- runoff and anthropogenic factors

El Niño years typically have higher water levels and storminess resulting in more erosion

Summary of Beach Changes

- > Beach volume relatively stable over time
- > Major El Niño years led to the largest beach width reductions (1992, 1998, 2009, 2011)

> In 1997-98

integral

- ~300,000 cubic yards of sand was moved offshore
- Maximum beach scour was ~14 feet (in vertical loss)

> Variability is highest in South Beach section

> North Dunes area saw the smallest trend with sediment moving into the foreshore

Cliff Erosion vs Dune Erosion

- > Storm erosion differs based on backshore
- > Bluffs and cliffs **do not recover**
- > Dunes erode and **can recover**
- Carmel has a multitude of backshore conditions:
 - Del Mar Dunes and North Dunes
 - Unarmored cliffs

integral

 Seawalls and riprap, primarily south of 8th Street

Sea Level Rise Scenarios

- Sea level rise projections are based on the State of California Sea Level Rise Guidance from 2018 and the 2024 update
- > Sea level rise scenarios considered mediumhigh risk aversion (.5% likely) to low-risk aversion (66% likely):
 - Current conditions, **2020 baseline**
 - Near-term, **1** ft of SLR / **2045 2060**
 - Medium-term, 2 ft of SLR / 2060 2080
 - Long-term, **4** ft of SLR / **2080 2100**+

integral

Above: SLR curves from the (2018) OPC guidance

*Current (2024) guidance indicates 4.6' of SLR by 2100 (Int-High Scenario)

Not for Third-Party Distribution

Beach Width Narrowing: Short term (2045 – 2060)

- > A typical summer beach still exists
- > Southern section becomes "squeezed" especially at 12th avenue headland
- > By **1 ft** of sea level rise, typical summer dry sand beach reduced by 20%

integral

North South 0 - 1 ft of SLR 0 - 1 ft of SLR OP TP

Beach Width Narrowing: Medium-term (2060 - 2080)

- > The northern beach section remains connected laterally
- Lateral access to areas south of 12th Avenue headland may be restricted
- > By **2 ft** of sea level rise, reduced by **39%**, with loss of lateral beach access to areas south of the 12th Avenue headland

integral

North

South

1-2 ft of SLR

Beach Width Narrowing : Long Term (2080 – 2100)

- Only continuous dry sand beach is between the northern sand ramps to Pescadero Canyon
- Two small pockets between 8th avenue and 11th avenue (~1.5 acres each)
- > By 4 ft of sea level rise, reduced by
 78%, with two small pocket beaches remaining in the south, but dry beach remaining north of the sand ramps

integral

North

South

Beach Width Narrowing with up to 5' of SLR

Sea Level Rise Elevation (ft)	Acres of Dry Sand Beach (summer)	Percentage
0	34.2	100%
1	27.4	80%
2	20.7	61%
3	14.1	41%
4	7.6	22%
5	2.6	8%

Assumes existing coastal armoring is maintained

integral

North

4 - 5 ft of SLR

South

4 - 5 ft of SLR

Cliff and Dune Overtopping and Erosion *With Coastal Armoring*

Erosion and Overtopping Short Term (1 ft: 2045 - 2060)

Overtopping:

 Highest risk between 8th and 10th Avenues

Erosion:

integral

- > High risk area for erosion is at Central Carmel Beach between 8th and 12th Avenues
- Red circle indicates an unarmored area of shoreline at Scenic Dr. and 12th Avenue

Not for Third-Party Distribution

Overtopping Potential:

Low Medium Medium-High Very High

Erosion hazard area

Cliff and Dune Erosion Medium Term (2 ft: 2060 – 2080)

Overtopping:

> Overtopping is highest between 8th and 12th Avenues

Erosion:

integral

- > Projected erosion hazards in areas behind seawalls range $\sim 20-40$ ft
- Erosion hazard zones are > slightly higher along the dune-backed shoreline

Central

South

Not for Third-Party Distribution

Overtopping Potential:

- Low Medium Medium-High Very High

Erosion hazard area Cliff and Dune Erosion Long Term (4 ft: 2080 – 2100)

Overtopping:

- South Carmel Beach between Martin Way to 13th Avenue
- North Beach near Pescadero Canyon

Erosion:

integral

 > Highest erosion potential around 12th Avenue up to 150 ft (see red circle) North

Central

South

Not for Third-Party Distribution

Overtopping Potential:

Low Medium Medium-High Very High

Erosion hazard area

Current Vulnerabilities

- > Stormwater conveyance
- > All beach access stairways and the Del Mar Overlook
- > **Restroom** near Santa Lucia Avenue, located at ~24 ft, same elevation of FEMA FIRM base flood elevation
- > Wave splash (not green water associated with overtopping) may exceed the bluff crest of the armored coastline at multiple locations:
 - Between 9th and 12th Aves
 - 13th Ave to Martin Way

integral

• At the private seawall near Pescadero Canyon

 $Stormwater\ infrastructure$

Restroom near Santa Lucia Ave

Short Term (1 ft SLR, 2045 - 2060)

- > Scenic Road is exposed in 6 locations from 8th Avenue to 11th Avenue
- > Wastewater mains are exposed at:
 - Martin Way

integral

- Between 9th and 10th Avenues
- Under the dunes between 7th and 8th Aves
- > **Dune ramps** may be at risk
- > 0.2 acres of **North Dunes Habitat** potentially eroded
- > During large storms wave splash could be more frequent between 8th Avenue and 11th Avenue

Medium Term (2ft SLR, 2060 - 2080)

- > Scenic Road: entire length exposed, including underground water and sewer infrastructure
- > Water main between 8th and 10th Avenues
- > An additional 0.3 acres of **dune habitat**

integral

 During storms, a wastewater lift station located at ~24.5 ft may be exposed to wave flooding

5 homes may be vulnerable under the *without armoring* scenario

Wastewater lift station near 8th Avenue

Long Term (2-4ft SLR, 2060 - 2100)

- > With armoring 44 homes along Scenic Road and Pescadero Canyon
- > Without armoring 59 homes along Scenic Road and Pescadero Canyon
- > Del Mar Parking Lot including two water storage tanks
- > 0.6 acres of dune habitat is exposed to erosion, for a total of 1.16 acres
- > Water main under Scenic Rd. at 13th Ave
- > Sewer main at 8th Ave
- > Wave overtopping during storm events is more frequent south of 8th Ave

Worst case high erosion scenario:

- Restroom at Del Mar Parking Lot
- Volleyball Courts

Breakout Group - Round 1

Share out at 4:50pm Circle back at 5pm

Adaptation Strategies

integral

Adaptation Projects vs. Policy Approaches Green vs Grey

_

Secondary Consequences

- > Construction Costs
- > Escalating Maintenance Costs
- > Access
- > Ecology
- > Recreation
- > Views

integral

- > Aesthetics
- > Loss of low-cost recreation
- > Loss of tourism-related revenues
- > Displacement of underrepresented communities

Source: Pilkey, O.H. and Dixon, K. L. 1996 (modified) The Corps and the Shore. Island Press, Washington, D.C.

C. Several decades (or more) later

Full Range of Feasible Strategies

Based on professional experience and consultation with City and Coastal Commission Staff

Adaptation Areas

integral

Stop, Reduce, or Avoid Erosion

Stop = loss of beach to protect upland – increasing costs
Reduce = balance beach and recreation – routine costs
Avoid = maintain beach, realign upland – high upfront costs

Adaptation Evaluation Criteria

Immediate, Short (5-20 yr), Medium (10-30 yr), Long (30+ yr)

> Criteria includes:

- > Reduce, Stop, or Avoid Erosion
- Construction Cost/Maintenance of the Investment
- > Effectiveness
- > Regulatory Viability

Co-benefits and Secondary Consequences including:

- > Beach widths
- > Water/surf/sand quality
- > Ecological impacts
- > Public access and safety

Short-term Management Strategies

integral

	Prior	orities Cost		Regulatory Viability	Secondary Impacts			
Strategy	Timing for Implementation	Priority Index Score (Balancing Effectiveness, Cost, and Other Criteria)	Construction	Maintenance (Including Cost Savings)		Beach Width Impacts	Environmental and Habitat Impacts: Water/Surf Quality and Ecological	Public Access and Safety
	Immediate, Short- term (5-20yr), Mid- term (10-30yr), Long- term (30yr +)	Index Score (0 - 20)	Low - \$, Medium - \$\$, High - \$\$\$	None to Low - \$, Medium - \$\$, High - \$\$\$	Viable, Likely, Less Likely	Negative, No Effect, Positive	Negative, No Effect, Positive	Negative, No Effect, Positive
Vegetation and landscaping to reinforce/protect terrace soil	Immediate	18	\$	\$\$	Viable	=	+	=
Dune restoration	Immediate	18	\$	\$\$	Viable	+	+	=
Beneficial reuse of sand	Immediate	20	\$	\$\$	Viable	÷	· •	i decisio
Living shorelines - utilize driftwood expanded dunes	Immediate	19	\$	\$\$	Viable	+	+	+
Beach nourishment of upland dune ramps	Short-term	20	\$\$	\$\$	Viable	+	+	+
Beach nourishment	Short-term	18	\$\$\$	\$\$\$	Depends	+	+	+
Sacrificial berm	Short-term	16	\$	\$\$\$	Likely	+	+	+
Sand management/harvesting	Short-term	15	\$	\$\$\$	Likely to Less Likely	+	- R. 1	· · ·

Y Continue Monitoring and Maintenance of Existing Structures

Vegetation, Dune, and Sand Management

- > Sacrificial Winter Storm Berm
- Living Shorelines Utilize Driftwood to Expand Dunes
- > Dune Restoration
- Vegetation and landscaping to reinforce and protect terrace soils
- > Beneficial Reuse of Sand or Opportunistic Beach Nourishment
- > Sand Management/Harvesting
- > Beach Nourishment
- integral > Dune Ramp Nourishment

Challenges with Sand in Carmel

- > Testing and Compatibility
 - Clean
 - Size, Color
- > Placement methods
 - At once
 - Continuous

> Sorting

integral

Different Grain Sizes

Transporting

Truck Dredge

	size class	diameter range (mm)	microns		
9	gravel	2.00 +			
	v. coarse sand	1.0 - 2.0			
	coarse sand	0.5 - 1.0			
	medium sand	0.25 - 0.5	250 - 500		
	fine sand	0.125 - 0.25	125 - 250		
	v. fine sand	0.0625 - 0.125	63 - 125		
	coarse silt	0.031 - 0.0625	31 - 63		
	silt	0.0039 - 0.031	3.9 - 31		
	clay	< 0.0039			

e Adverse effects of smaller-than-native grain size

d Adverse effects of larger-than-native grain size

f Grain-size effects on invertebrates

Sacrificial Winter Storm Berm

In the fall, construct a low berm along the backshore to reduce wave impacts at the back of the beach

Potential Location

integral

At the **back beach** in areas without seawalls – along the dune-backed shoreline from 8th to 4th

Living Shorelines - Utilize Driftwood to Expand Dunes

> Dunes with driftwood core and vegetation along existing dune-backed shoreline

Potential Location

integral

Dune-backed areas, esp. at the 8th Avenue Sand Ramp Northern Sand Ramps

Living Shoreline Construction in Aptos

Dune Restoration

> Restoration of native dune areas.

- > Low hummocky dunes along the existing dune-backed shoreline.
- > Can correspond with a program for the beneficial reuse of sand from local sources and incorporate driftwood material.

Potential Location Back beach area of the Del Mar Dunes integral

Vegetation and landscaping to reinforce and protect terrace soils

Planting and landscaping of bluff areas to hold soil in place and reduce bluff erosion. This may include terracing and the use of erosion fabric on the bluff with landscaping to retain soil

Potential Location

Along the **backshore** and terrace south of 8th Ave

These efforts can coincide with:

- Trail and access improvements
- Stormwater improvements
- Controlling access (signage, fencing etc.)

Opportunistic Beach Nourishment or Beneficial Reuse

- > Placement of small volumes of sand acquired from nearby sources during construction or flood control maintenance activities and placed directly on the beach (Placement is usually by truck)
- Policy recommendation Develop a program requiring beach compatible sand to be placed on beach or upland dune ramps

integral

Sand Management/Harvesting

Active harvesting and movement of sand from the foreshore to the back beach and backshore to widen the beach

Potential Location

integral

The entire **beach**. Conducted at high-priority access locations including those at 4th Ave and the Del Mar Sand Ramps

Beach Nourishment

> Large volume of sand usually from an offshore source and pumped to the beach

Dune Ramp Nourishment

> Placement of sand at the top of the existing sand ramps, avoids many of the permitting and regulatory hurdles with sand delivered to the beach during erosion events

Potential Location

Sand ramps at Del Mar and $8^{th}\,Ave$

Engineered Infrastructure

- > Stop or Reduce Erosion
 - Riprap and Seawall Improvements
 - Raise Crest of Existing Structures
 - Protect Upper Bluff Terrace
 - Replace Riprap with Vertical Seawalls
 - Low Crested Structures to Reduce Erosion and Scour
 - Shore Platform Enhancement
 - Integrate Wave Deflectors in Access Improvements
 - Nearshore Reefs
- > Requires monitoring and maintenance
- > Challenging to permit but feasible if tied to protecting public infrastructure or improving/maintaining access

integral > Easier to permit if multiple benefits – access, habitat, recreation

Short to Medium Term Engineered Strategies

> Stop erosion vs reduce erosive processes

integra

- > **Stop** erosion likely to protect upland longer but cause beach loss faster
- > Reduce erosion likely supports longer beach and recreation

	Prior	rities	C	ost	Regulatory Viability	Secondary Impacts			
Strategy Description	Timing for Implementation	Priority Index Score (Balancing Effectiveness, Cost, and Other Criteria)	Construction	Maintenance (Including Cost Savings)		Beach Width Impacts	Environmental and Habitat Impacts: Water/Surf Quality and Ecological	Public Access and Safety	
	Immediate, Short- term (5-20yr), Mid- term (10-30yr), Long- term (30yr +)	Index Score (0 - 20)	Low - \$, Medium - \$\$, High - \$\$\$	None to Low - \$, Medium - \$\$, High - \$\$\$	Viable, Likely, Less Likely	Negative, No Effect, Positive	Negative, No Effect, Positive	Negative, No Effect, Positive	
Monitoring and maintenance of existing structures	Immediate	17	\$	\$\$\$	Viable) +	•	+	
Integrate wave deflectors into access improvements	Short-term	17	\$5	\$\$	Likely	i ne		- *	
Replace revetments with seawalls	Mid-term	16	\$\$\$	\$\$	Likely	+	=	=	
Wave tripping low structures on bedrock	Mid-term	13	\$\$	\$\$\$	Less Likely	i n≢ro		+	
Raise crest and redesign of seawalls	Mid-term	12	\$\$\$	\$55	Likely	i ne in	- 5 -		
Wave cut terrace augmentation	Mid-term	12	\$\$	\$\$	Less Likely	· · · · · ·		Depends	
Raise riprap	Mid-term	11.5	\$\$\$	\$\$\$	Likely	÷,	14	+	
Infill seawalls	Mid-term	12	\$\$\$	\$\$	Less Likely	L 36.1	1.	+	
Soil nail wall or tie back wall to protect bluff terrace	Mid-term	12	\$\$\$	\$\$	Less Likely	4.	1.4.	+	
Nearshore reefs	Mid-term	13	\$\$\$	\$\$\$	Less Likely	÷	=	+	

Stop erosion

- > Riprap and Seawall Improvements
- > Raise Crest of Existing Structures
- > Protect Upper Bluff Terrace
- > Replace Riprap with Vertical Seawalls

Riprap and Seawall Improvements

Includes restacking and raising riprap, raising the crest of seawalls, and building infill walls at unarmored backshore locations

Potential Location

From 8th Av south

integral

Soil nail wall or tie back wall to protect bluff terrace

Shotcrete textured wall similar to the one at Pebble Beach Golf Links

Potential Location

integral

From 8th Av south. Especially where the terrace is more exposed to wave energy and where there are no conflicts with existing trees and vegetation.

Shotcrete wall at Pebble Beach Golf Links

Replacement of Riprap with Vertical Seawalls

Revetment is about 40 feet high built at a 2: 1 slope. Footprint of the armoring occupies 80 feet of beach

reduced habitat, intertidal only beach, surf only low tide

reduced habitat, maintain some beach area

Vertical seawalls or soil nail walls have a smaller footprint and temporarily widen the beach by removing a revetment

Reduce erosion

- > Low Crested Structures to Reduce Erosion and Scour
- > Shore Platform Enhancement
- Integrate Wave Deflectors in Access Improvements
- > Nearshore Reefs

integral

Low Crested Structures to Reduce Erosion and Scour

Similar to a sill, built into exposed shore platforms to reduce currents and wave energy

Potential Location

In **back beach** areas with gaps in the shore platform where wave exposure is high

integral

Would consist of cemented sediments to retain the same color and material composition as the existing sandstone and mudstone outcroppings

Shore Platform Enhancement

Augmentation and extension of shore platforms (or wave-cut terraces) to improve wave attenuation.

> Would consist of cemented sediments to retain the same color and material composition as the existing sandstone and mudstone outcroppings.

Potential Location

integral

In **back beach** areas on top of shore platforms

Integrate Wave Deflectors in Access Improvements

Concrete protrusions at the base of beach stair foundations to deflect wave energy

Potential Location

integral

Beach stair accessways, primarily those subject to nearshore wave currents

Nearshore Reefs

A rubble mound or concrete structure(s) with a crest below the water line to reduce wave energy

Potential Location

integral

A nearshore reef is currently located offshore from 4th Ave. Could include a series of additional reefs.

Retreat and Relocation

Retreat and Relocation Strategies

integral

	Prio	rities	c	ost	Regulatory Viability	Secondary Impacts		
Strategy	Timing for Implementation	Priority Index Score (Balancing Effectiveness, Cost, and Other Criteria)	Construction	Maintenance (Including Cost Savings)		Beach Width Impacts	Environmental and Habitat Impacts: Water/Surf Quality and Ecological	Public Access and Safety
	Immediate, Short- term (5-20yr), Mid- term (10-30yr), Long- term (30yr +)	Index Score (0 - 20)	Low - \$, Medium - \$\$, High - \$\$\$	None to Low - \$, Medium - \$\$, High - \$\$\$	Viable, Likely, Less Likely	Negative, No Effect, Positive	Negative, No Effect, Positive	Negative, No Effect, Positive
Transportation Realignment (pedestrian path)	Long-term	17.5	Varies (\$\$)	5	Likely	+	+	+
Retreat/Relocation	Long-term	17	Varies (\$\$\$+)	s	Likely	÷	+	÷

Retreat and Relocation

- > Transportation Realignment
 - Accommodating erosion in relation to pedestrian and vehicular access along Scenic Rd.
- > Retreat and Relocation

integral

Phased relocation of infrastructure, parking lots, access ways, roadways, and homes from vulnerable locations

RETREAT

Retreat and Relocation

- > Transportation Realignment
 - Cars vs multi-modal uses
 - Residential access
 - Emergency access
 - Coastal Access
- > Relocation of Critical Infrastructure
- Wastewater infrastructure (sewer lines, and pump stations)

Important Considerations

- > Vision for the Future How important is the beach vs the current upland?
- > What kind of adaptation strategies is the City willing to consider?
- > When to transition from one adaptation strategy to the next?
 - Lead time, Monitoring, Triggers
- > Beach and Sand Management

integral

- Carmel Beach sand is unique and difficult to find. If the beach disappears with sea level rise, at what point will a change in sand quality become palatable?
- > How to move away from the ocean gracefully?
 - Relocating critical infrastructure
 - Rerouting Scenic Rd, Del Mar Parking Lot
- > How is the City going to pay for adaptation over time?

Breakout Group - Round 2 Share out at 5:50 pm

Adaptation Strategies

Driftwood expanded dunes

Sand Management

Sacrificial Winter Berm

Wave Deflectors

Adaptation Strategies cont.

Seawall

integral

Rip Rap Revetment

Wave tripping structure on bedrock

Thank you for participating!

